colbert_kd_scores¶
Computes the ColBERT scores between queries and documents embeddings. This scoring function is dedicated to the knowledge distillation pipeline.
Parameters¶
-
queries_embeddings (list | numpy.ndarray | torch.Tensor)
-
documents_embeddings (list | numpy.ndarray | torch.Tensor)
-
mask (torch.Tensor) – defaults to
None
Examples¶
>>> import torch
>>> queries_embeddings = torch.tensor([
... [[1.], [0.], [0.], [0.]],
... [[0.], [2.], [0.], [0.]],
... [[0.], [0.], [3.], [0.]],
... ])
>>> documents_embeddings = torch.tensor([
... [[[10.], [0.], [1.]], [[20.], [0.], [1.]], [[30.], [0.], [1.]]],
... [[[0.], [100.], [1.]], [[0.], [200.], [1.]], [[0.], [300.], [1.]]],
... [[[1.], [0.], [1000.]], [[1.], [0.], [2000.]], [[10.], [0.], [3000.]]],
... ])
>>> mask = torch.tensor([
... [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]],
... [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]],
... [[1., 1., 1.], [1., 1., 1.], [1., 1., 0.]],
... ])
>>> colbert_kd_scores(
... queries_embeddings=queries_embeddings,
... documents_embeddings=documents_embeddings,
... mask=mask
... )
tensor([[ 10., 20., 30.],
[ 200., 400., 600.],
[3000., 6000., 30.]])