ColBERT¶
Loads or creates a ColBERT model that can be used to map sentences / text to multi-vectors embeddings.
Parameters¶
-
model_name_or_path (str | None) – defaults to
None
If it is a filepath on disc, it loads the model from that path. If it is not a path, it first tries to download a pre-trained SentenceTransformer model. If that fails, tries to construct a model from the Hugging Face Hub with that name.
-
modules (Optional[Iterable[torch.nn.modules.module.Module]]) – defaults to
None
A list of torch Modules that should be called sequentially, can be used to create custom SentenceTransformer models from scratch.
-
device (str | None) – defaults to
None
Device (like "cuda", "cpu", "mps", "npu") that should be used for computation. If None, checks if a GPU can be used.
-
prompts (dict[str, str] | None) – defaults to
None
A dictionary with prompts for the model. The key is the prompt name, the value is the prompt text. The prompt text will be prepended before any text to encode. For example:
{"query": "query: ", "passage": "passage: "}
or{"clustering": "Identify the main category based on the titles in "}
. -
default_prompt_name (str | None) – defaults to
None
The name of the prompt that should be used by default. If not set, no prompt will be applied.
-
similarity_fn_name (Union[str, sentence_transformers.similarity_functions.SimilarityFunction, NoneType]) – defaults to
None
The name of the similarity function to use. Valid options are "cosine", "dot", "euclidean", and "manhattan". If not set, it is automatically set to "cosine" if
similarity
orsimilarity_pairwise
are called whilemodel.similarity_fn_name
is stillNone
. -
cache_folder (str | None) – defaults to
None
Path to store models. Can also be set by the SENTENCE_TRANSFORMERS_HOME environment variable.
-
trust_remote_code (bool) – defaults to
False
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
-
revision (str | None) – defaults to
None
The specific model version to use. It can be a branch name, a tag name, or a commit id, for a stored model on Hugging Face.
-
local_files_only (bool) – defaults to
False
Whether or not to only look at local files (i.e., do not try to download the model).
-
token (bool | str | None) – defaults to
None
Hugging Face authentication token to download private models.
-
use_auth_token (bool | str | None) – defaults to
None
Deprecated argument. Please use
token
instead. -
truncate_dim (int | None) – defaults to
None
The dimension to truncate sentence embeddings to.
None
does no truncation. Truncation is only applicable during inference when :meth:SentenceTransformer.encode
is called. -
embedding_size (int | None) – defaults to
None
The output size of the projection layer. Default to 128.
-
bias (bool) – defaults to
False
-
query_prefix (str | None) – defaults to
[Q]
Prefix to add to the queries.
-
document_prefix (str | None) – defaults to
[D]
Prefix to add to the documents.
-
add_special_tokens (bool) – defaults to
True
Add the prefix to the inputs.
-
truncation (bool) – defaults to
True
Truncate the inputs to the encoder max lengths or use sliding window encoding.
-
query_length (int | None) – defaults to
None
The length of the query to truncate/pad to with mask tokens. If set, will override the config value. Default to 32.
-
document_length (int | None) – defaults to
None
The max length of the document to truncate. If set, will override the config value. Default to 180.
-
attend_to_expansion_tokens (bool) – defaults to
False
Whether to attend to the expansion tokens in the attention layers model. If False, the original tokens will not only attend to the expansion tokens, only the expansion tokens will attend to the original tokens. Default is False (as in the original ColBERT codebase).
-
skiplist_words (list[str] | None) – defaults to
None
A list of words to skip from the documents scoring (note that these tokens are used for encoding and are only skipped during the scoring). Default is the list of string.punctuation.
-
model_kwargs (dict | None) – defaults to
None
Additional model configuration parameters to be passed to the Huggingface Transformers model. Particularly useful options are: -
torch_dtype
: Override the defaulttorch.dtype
and load the model under a specificdtype
. The different options are: 1.torch.float16
,torch.bfloat16
ortorch.float
: load in a specifieddtype
, ignoring the model'sconfig.torch_dtype
if one exists. If not specified - the model will get loaded intorch.float
(fp32). 2."auto"
- Atorch_dtype
entry in theconfig.json
file of the model will be attempted to be used. If this entry isn't found then next check thedtype
of the first weight in the checkpoint that's of a floating point type and use that asdtype
. This will load the model using thedtype
it was saved in at the end of the training. It can't be used as an indicator of how the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32. -attn_implementation
: The attention implementation to use in the model (if relevant). Can be any of"eager"
(manual implementation of the attention),"sdpa"
(usingF.scaled_dot_product_attention <https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html>
), or"flash_attention_2"
(usingDao-AILab/flash-attention <https://github.com/Dao-AILab/flash-attention>
). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual"eager"
implementation. See thePreTrainedModel.from_pretrained <https://huggingface.co/docs/transformers/en/main_classes/model#transformers.PreTrainedModel.from_pretrained>
_ documentation for more details. -
tokenizer_kwargs (dict | None) – defaults to
None
Additional tokenizer configuration parameters to be passed to the Huggingface Transformers tokenizer. See the
AutoTokenizer.from_pretrained <https://huggingface.co/docs/transformers/en/model_doc/auto#transformers.AutoTokenizer.from_pretrained>
_ documentation for more details. -
config_kwargs (dict | None) – defaults to
None
Additional model configuration parameters to be passed to the Huggingface Transformers config. See the
AutoConfig.from_pretrained <https://huggingface.co/docs/transformers/en/model_doc/auto#transformers.AutoConfig.from_pretrained>
_ documentation for more details. -
model_card_data (Optional[sentence_transformers.model_card.SentenceTransformerModelCardData]) – defaults to
None
A model card data object that contains information about the model. This is used to generate a model card when saving the model. If not set, a default model card data object is created.
Attributes¶
-
device
Get torch.device from module, assuming that the whole module has one device. In case there are no PyTorch parameters, fall back to CPU.
-
max_seq_length
Returns the maximal input sequence length for the model. Longer inputs will be truncated. Returns: int: The maximal input sequence length. Example: :: from sentence_transformers import SentenceTransformer model = SentenceTransformer("all-mpnet-base-v2") print(model.max_seq_length) # => 384
-
similarity
Compute the similarity between two collections of embeddings. The output will be a matrix with the similarity scores between all embeddings from the first parameter and all embeddings from the second parameter. This differs from
similarity_pairwise
which computes the similarity between each pair of embeddings. Args: embeddings1 (Union[Tensor, ndarray]): [num_embeddings_1, embedding_dim] or [embedding_dim]-shaped numpy array or torch tensor. embeddings2 (Union[Tensor, ndarray]): [num_embeddings_2, embedding_dim] or [embedding_dim]-shaped numpy array or torch tensor. Returns: Tensor: A [num_embeddings_1, num_embeddings_2]-shaped torch tensor with similarity scores. Example: :: >>> model = SentenceTransformer("all-mpnet-base-v2") >>> sentences = [ ... "The weather is so nice!", ... "It's so sunny outside.", ... "He's driving to the movie theater.", ... "She's going to the cinema.", ... ] >>> embeddings = model.encode(sentences, normalize_embeddings=True) >>> model.similarity(embeddings, embeddings) tensor([[1.0000, 0.7235, 0.0290, 0.1309], [0.7235, 1.0000, 0.0613, 0.1129], [0.0290, 0.0613, 1.0000, 0.5027], [0.1309, 0.1129, 0.5027, 1.0000]]) >>> model.similarity_fn_name "cosine" >>> model.similarity_fn_name = "euclidean" >>> model.similarity(embeddings, embeddings) tensor([[-0.0000, -0.7437, -1.3935, -1.3184], [-0.7437, -0.0000, -1.3702, -1.3320], [-1.3935, -1.3702, -0.0000, -0.9973], [-1.3184, -1.3320, -0.9973, -0.0000]]) -
similarity_fn_name
Return the name of the similarity function used by :meth:
SentenceTransformer.similarity
and :meth:SentenceTransformer.similarity_pairwise
. Returns: Optional[str]: The name of the similarity function. Can be None if not set, in which case any uses of :meth:SentenceTransformer.similarity
and :meth:SentenceTransformer.similarity_pairwise
default to "cosine". Example: >>> model = SentenceTransformer("multi-qa-mpnet-base-dot-v1") >>> model.similarity_fn_name 'dot' -
similarity_pairwise
Compute the similarity between two collections of embeddings. The output will be a vector with the similarity scores between each pair of embeddings. Args: embeddings1 (Union[Tensor, ndarray]): [num_embeddings, embedding_dim] or [embedding_dim]-shaped numpy array or torch tensor. embeddings2 (Union[Tensor, ndarray]): [num_embeddings, embedding_dim] or [embedding_dim]-shaped numpy array or torch tensor. Returns: Tensor: A [num_embeddings]-shaped torch tensor with pairwise similarity scores. Example: :: >>> model = SentenceTransformer("all-mpnet-base-v2") >>> sentences = [ ... "The weather is so nice!", ... "It's so sunny outside.", ... "He's driving to the movie theater.", ... "She's going to the cinema.", ... ] >>> embeddings = model.encode(sentences, normalize_embeddings=True) >>> model.similarity_pairwise(embeddings[::2], embeddings[1::2]) tensor([0.7235, 0.5027]) >>> model.similarity_fn_name "cosine" >>> model.similarity_fn_name = "euclidean" >>> model.similarity_pairwise(embeddings[::2], embeddings[1::2]) tensor([-0.7437, -0.9973])
-
tokenizer
Property to get the tokenizer that is used by this model
Examples¶
>>> from pylate import models
>>> model = models.ColBERT(
... model_name_or_path="sentence-transformers/all-MiniLM-L6-v2",
... device="cpu",
... )
>>> embeddings = model.encode("Hello, how are you?")
>>> assert isinstance(embeddings, np.ndarray)
>>> embeddings = model.encode([
... "Hello, how are you?",
... "How is the weather today?"
... ])
>>> assert len(embeddings) == 2
>>> assert isinstance(embeddings[0], np.ndarray)
>>> assert isinstance(embeddings[1], np.ndarray)
>>> embeddings = model.encode([
... [
... "Hello, how are you?",
... "How is the weather today?"
... ],
... [
... "Hello, how are you?",
... "How is the weather today?"
... ],
... ])
>>> assert len(embeddings) == 2
>>> model.save_pretrained("test-model")
>>> model = models.ColBERT("test-model")
>>> embeddings = model.encode([
... "Hello, how are you?",
... "How is the weather today?"
... ])
>>> assert len(embeddings) == 2
>>> assert isinstance(embeddings[0], np.ndarray)
>>> assert isinstance(embeddings[1], np.ndarray)
Methods¶
call
Call self as a function.
Parameters
- args
- kwargs
add_module
Add a child module to the current module.
The module can be accessed as an attribute using the given name. Args: name (str): name of the child module. The child module can be accessed from this module using the given name module (Module): child module to be added to the module.
Parameters
- name (str)
- module (Optional[ForwardRef('Module')])
append
Append a given module to the end.
Args: module (nn.Module): module to append
Parameters
- module (torch.nn.modules.module.Module)
apply
Apply fn
recursively to every submodule (as returned by .children()
) as well as self.
Typical use includes initializing the parameters of a model (see also :ref:nn-init-doc
). Args: fn (:class:Module
-> None): function to be applied to each submodule Returns: Module: self Example:: >>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
Parameters
- fn (Callable[[ForwardRef('Module')], NoneType])
bfloat16
Casts all floating point parameters and buffers to bfloat16
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
buffers
Return an iterator over module buffers.
Args: recurse (bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Yields: torch.Tensor: module buffer Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size())
Parameters
- recurse (bool) – defaults to
True
children
Return an iterator over immediate children modules.
Yields: Module: a child module
compile
Compile this Module's forward using :func:torch.compile
.
This Module's __call__
method is compiled and all arguments are passed as-is to :func:torch.compile
. See :func:torch.compile
for details on the arguments for this function.
Parameters
- args
- kwargs
cpu
Move all model parameters and buffers to the CPU.
.. note:: This method modifies the module in-place. Returns: Module: self
cuda
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized. .. note:: This method modifies the module in-place. Args: device (int, optional): if specified, all parameters will be copied to that device Returns: Module: self
Parameters
- device (Union[int, torch.device, NoneType]) – defaults to
None
Device (like "cuda", "cpu", "mps", "npu") that should be used for computation. If None, checks if a GPU can be used.
double
Casts all floating point parameters and buffers to double
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
encode
Computes sentence embeddings.
Parameters
- sentences (str | list[str])
- prompt_name (str | None) – defaults to
None
- prompt (str | None) – defaults to
None
- batch_size (int) – defaults to
32
- show_progress_bar (bool) – defaults to
None
- precision (Literal['float32', 'int8', 'uint8', 'binary', 'ubinary']) – defaults to
float32
- convert_to_numpy (bool) – defaults to
True
- convert_to_tensor (bool) – defaults to
False
- padding (bool) – defaults to
False
- device (str) – defaults to
None
Device (like "cuda", "cpu", "mps", "npu") that should be used for computation. If None, checks if a GPU can be used. - normalize_embeddings (bool) – defaults to
True
- is_query (bool) – defaults to
True
- pool_factor (int) – defaults to
1
- protected_tokens (int) – defaults to
1
encode_multi_process
Encodes a list of sentences using multiple processes and GPUs via :meth:SentenceTransformer.encode <sentence_transformers.SentenceTransformer.encode>
. The sentences are chunked into smaller packages and sent to individual processes, which encode them on different GPUs or CPUs. This method is only suitable for encoding large sets of sentences.
Parameters
- sentences (list[str])
- pool (dict[str, object])
- prompt_name (str | None) – defaults to
None
- prompt (str | None) – defaults to
None
- batch_size (int) – defaults to
32
- chunk_size (int) – defaults to
None
- precision (Literal['float32', 'int8', 'uint8', 'binary', 'ubinary']) – defaults to
float32
- normalize_embeddings (bool) – defaults to
True
- padding (bool) – defaults to
False
- is_query (bool) – defaults to
True
- pool_factor (int) – defaults to
1
- protected_tokens (int) – defaults to
1
eval
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
, etc. This is equivalent with :meth:self.train(False) <torch.nn.Module.train>
. See :ref:locally-disable-grad-doc
for a comparison between .eval()
and several similar mechanisms that may be confused with it. Returns: Module: self
evaluate
Evaluate the model based on an evaluator
Args: evaluator (SentenceEvaluator): The evaluator used to evaluate the model. output_path (str, optional): The path where the evaluator can write the results. Defaults to None. Returns: The evaluation results.
Parameters
- evaluator (sentence_transformers.evaluation.SentenceEvaluator.SentenceEvaluator)
- output_path (str) – defaults to
None
extend
extra_repr
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
fit
Deprecated training method from before Sentence Transformers v3.0, it is recommended to use :class:~sentence_transformers.trainer.SentenceTransformerTrainer
instead. This method uses :class:~sentence_transformers.trainer.SentenceTransformerTrainer
behind the scenes, but does not provide as much flexibility as the Trainer itself.
This training approach uses a list of DataLoaders and Loss functions to train the model. Each DataLoader is sampled in turn for one batch. We sample only as many batches from each DataLoader as there are in the smallest one to make sure of equal training with each dataset, i.e. round robin sampling. This method should produce equivalent results in v3.0+ as before v3.0, but if you encounter any issues with your existing training scripts, then you may wish to use :meth:SentenceTransformer.old_fit <sentence_transformers.SentenceTransformer.old_fit>
instead. That uses the old training method from before v3.0. Args: train_objectives: Tuples of (DataLoader, LossFunction). Pass more than one for multi-task learning evaluator: An evaluator (sentence_transformers.evaluation) evaluates the model performance during training on held- out dev data. It is used to determine the best model that is saved to disc. epochs: Number of epochs for training steps_per_epoch: Number of training steps per epoch. If set to None (default), one epoch is equal the DataLoader size from train_objectives. scheduler: Learning rate scheduler. Available schedulers: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from o up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero. optimizer_class: Optimizer optimizer_params: Optimizer parameters weight_decay: Weight decay for model parameters evaluation_steps: If > 0, evaluate the model using evaluator after each number of training steps output_path: Storage path for the model and evaluation files save_best_model: If true, the best model (according to evaluator) is stored at output_path max_grad_norm: Used for gradient normalization. use_amp: Use Automatic Mixed Precision (AMP). Only for Pytorch >= 1.6.0 callback: Callback function that is invoked after each evaluation. It must accept the following three parameters in this order: score
, epoch
, steps
show_progress_bar: If True, output a tqdm progress bar checkpoint_path: Folder to save checkpoints during training checkpoint_save_steps: Will save a checkpoint after so many steps checkpoint_save_total_limit: Total number of checkpoints to store
Parameters
- train_objectives (Iterable[Tuple[torch.utils.data.dataloader.DataLoader, torch.nn.modules.module.Module]])
- evaluator (sentence_transformers.evaluation.SentenceEvaluator.SentenceEvaluator) – defaults to
None
- epochs (int) – defaults to
1
- steps_per_epoch – defaults to
None
- scheduler (str) – defaults to
WarmupLinear
- warmup_steps (int) – defaults to
10000
- optimizer_class (Type[torch.optim.optimizer.Optimizer]) – defaults to
<class 'torch.optim.adamw.AdamW'>
- optimizer_params (Dict[str, object]) – defaults to
{'lr': 2e-05}
- weight_decay (float) – defaults to
0.01
- evaluation_steps (int) – defaults to
0
- output_path (str) – defaults to
None
- save_best_model (bool) – defaults to
True
- max_grad_norm (float) – defaults to
1
- use_amp (bool) – defaults to
False
- callback (Callable[[float, int, int], NoneType]) – defaults to
None
- show_progress_bar (bool) – defaults to
True
- checkpoint_path (str) – defaults to
None
- checkpoint_save_steps (int) – defaults to
500
- checkpoint_save_total_limit (int) – defaults to
0
float
Casts all floating point parameters and buffers to float
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
forward
Define the computation performed at every call.
Should be overridden by all subclasses. .. note:: Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
Parameters
- input (Any)
get_buffer
Return the buffer given by target
if it exists, otherwise throw an error.
See the docstring for get_submodule
for a more detailed explanation of this method's functionality as well as how to correctly specify target
. Args: target: The fully-qualified string name of the buffer to look for. (See get_submodule
for how to specify a fully-qualified string.) Returns: torch.Tensor: The buffer referenced by target
Raises: AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
Parameters
- target (str)
get_extra_state
Return any extra state to include in the module's state_dict.
Implement this and a corresponding :func:set_extra_state
for your module if you need to store extra state. This function is called when building the module's state_dict()
. Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes. Returns: object: Any extra state to store in the module's state_dict
get_max_seq_length
Returns the maximal sequence length that the model accepts. Longer inputs will be truncated.
Returns: Optional[int]: The maximal sequence length that the model accepts, or None if it is not defined.
get_parameter
Return the parameter given by target
if it exists, otherwise throw an error.
See the docstring for get_submodule
for a more detailed explanation of this method's functionality as well as how to correctly specify target
. Args: target: The fully-qualified string name of the Parameter to look for. (See get_submodule
for how to specify a fully-qualified string.) Returns: torch.nn.Parameter: The Parameter referenced by target
Raises: AttributeError: If the target string references an invalid path or resolves to something that is not an nn.Parameter
Parameters
- target (str)
get_sentence_embedding_dimension
Returns the number of dimensions in the output of :meth:SentenceTransformer.encode <sentence_transformers.SentenceTransformer.encode>
.
Returns: Optional[int]: The number of dimensions in the output of encode
. If it's not known, it's None
.
get_sentence_features
get_submodule
Return the submodule given by target
if it exists, otherwise throw an error.
For example, let's say you have an nn.Module
A
that looks like this: .. code-block:: text A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) ) (The diagram shows an nn.Module
A
. A
has a nested submodule net_b
, which itself has two submodules net_c
and linear
. net_c
then has a submodule conv
.) To check whether or not we have the linear
submodule, we would call get_submodule("net_b.linear")
. To check whether we have the conv
submodule, we would call get_submodule("net_b.net_c.conv")
. The runtime of get_submodule
is bounded by the degree of module nesting in target
. A query against named_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule
should always be used. Args: target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.) Returns: torch.nn.Module: The submodule referenced by target
Raises: AttributeError: If the target string references an invalid path or resolves to something that is not an nn.Module
Parameters
- target (str)
gradient_checkpointing_enable
half
Casts all floating point parameters and buffers to half
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
insert
insert_prefix_token
Inserts a prefix token at the beginning of each sequence in the input tensor.
Parameters
- input_ids (torch.Tensor)
- prefix_id (int)
ipu
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized. .. note:: This method modifies the module in-place. Arguments: device (int, optional): if specified, all parameters will be copied to that device Returns: Module: self
Parameters
- device (Union[int, torch.device, NoneType]) – defaults to
None
Device (like "cuda", "cpu", "mps", "npu") that should be used for computation. If None, checks if a GPU can be used.
load
load_state_dict
Copy parameters and buffers from :attr:state_dict
into this module and its descendants.
If :attr:strict
is True
, then the keys of :attr:state_dict
must exactly match the keys returned by this module's :meth:~torch.nn.Module.state_dict
function. .. warning:: If :attr:assign
is True
the optimizer must be created after the call to :attr:load_state_dict
unless :func:~torch.__future__.get_swap_module_params_on_conversion
is True
. Args: state_dict (dict): a dict containing parameters and persistent buffers. strict (bool, optional): whether to strictly enforce that the keys in :attr:state_dict
match the keys returned by this module's :meth:~torch.nn.Module.state_dict
function. Default: True
assign (bool, optional): When False
, the properties of the tensors in the current module are preserved while when True
, the properties of the Tensors in the state dict are preserved. The only exception is the requires_grad
field of :class:~torch.nn.Parameter
s for which the value from the module is preserved. Default: False
Returns: NamedTuple
with missing_keys
and unexpected_keys
fields: * missing_keys is a list of str containing any keys that are expected by this module but missing from the provided state_dict
. * unexpected_keys is a list of str containing the keys that are not expected by this module but present in the provided state_dict
. Note: If a parameter or buffer is registered as None
and its corresponding key exists in :attr:state_dict
, :meth:load_state_dict
will raise a RuntimeError
.
Parameters
- state_dict (Mapping[str, Any])
- strict (bool) – defaults to
True
- assign (bool) – defaults to
False
modules
Return an iterator over all modules in the network.
Yields: Module: a module in the network Note: Duplicate modules are returned only once. In the following example, l
will be returned only once. Example:: >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
named_buffers
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args: prefix (str): prefix to prepend to all buffer names. recurse (bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True. Yields: (str, torch.Tensor): Tuple containing the name and buffer Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
Parameters
- prefix (str) – defaults to ``
- recurse (bool) – defaults to
True
- remove_duplicate (bool) – defaults to
True
named_children
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields: (str, Module): Tuple containing a name and child module Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
named_modules
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args: memo: a memo to store the set of modules already added to the result prefix: a prefix that will be added to the name of the module remove_duplicate: whether to remove the duplicated module instances in the result or not Yields: (str, Module): Tuple of name and module Note: Duplicate modules are returned only once. In the following example, l
will be returned only once. Example:: >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
Parameters
- memo (Optional[Set[ForwardRef('Module')]]) – defaults to
None
- prefix (str) – defaults to ``
- remove_duplicate (bool) – defaults to
True
named_parameters
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args: prefix (str): prefix to prepend to all parameter names. recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. remove_duplicate (bool, optional): whether to remove the duplicated parameters in the result. Defaults to True. Yields: (str, Parameter): Tuple containing the name and parameter Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
Parameters
- prefix (str) – defaults to ``
- recurse (bool) – defaults to
True
- remove_duplicate (bool) – defaults to
True
old_fit
Deprecated training method from before Sentence Transformers v3.0, it is recommended to use :class:sentence_transformers.trainer.SentenceTransformerTrainer
instead. This method should only be used if you encounter issues with your existing training scripts after upgrading to v3.0+.
This training approach uses a list of DataLoaders and Loss functions to train the model. Each DataLoader is sampled in turn for one batch. We sample only as many batches from each DataLoader as there are in the smallest one to make sure of equal training with each dataset, i.e. round robin sampling. Args: train_objectives: Tuples of (DataLoader, LossFunction). Pass more than one for multi-task learning evaluator: An evaluator (sentence_transformers.evaluation) evaluates the model performance during training on held- out dev data. It is used to determine the best model that is saved to disc. epochs: Number of epochs for training steps_per_epoch: Number of training steps per epoch. If set to None (default), one epoch is equal the DataLoader size from train_objectives. scheduler: Learning rate scheduler. Available schedulers: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts warmup_steps: Behavior depends on the scheduler. For WarmupLinear (default), the learning rate is increased from o up to the maximal learning rate. After these many training steps, the learning rate is decreased linearly back to zero. optimizer_class: Optimizer optimizer_params: Optimizer parameters weight_decay: Weight decay for model parameters evaluation_steps: If > 0, evaluate the model using evaluator after each number of training steps output_path: Storage path for the model and evaluation files save_best_model: If true, the best model (according to evaluator) is stored at output_path max_grad_norm: Used for gradient normalization. use_amp: Use Automatic Mixed Precision (AMP). Only for Pytorch >= 1.6.0 callback: Callback function that is invoked after each evaluation. It must accept the following three parameters in this order: score
, epoch
, steps
show_progress_bar: If True, output a tqdm progress bar checkpoint_path: Folder to save checkpoints during training checkpoint_save_steps: Will save a checkpoint after so many steps checkpoint_save_total_limit: Total number of checkpoints to store
Parameters
- train_objectives (Iterable[Tuple[torch.utils.data.dataloader.DataLoader, torch.nn.modules.module.Module]])
- evaluator (sentence_transformers.evaluation.SentenceEvaluator.SentenceEvaluator) – defaults to
None
- epochs (int) – defaults to
1
- steps_per_epoch – defaults to
None
- scheduler (str) – defaults to
WarmupLinear
- warmup_steps (int) – defaults to
10000
- optimizer_class (Type[torch.optim.optimizer.Optimizer]) – defaults to
<class 'torch.optim.adamw.AdamW'>
- optimizer_params (Dict[str, object]) – defaults to
{'lr': 2e-05}
- weight_decay (float) – defaults to
0.01
- evaluation_steps (int) – defaults to
0
- output_path (str) – defaults to
None
- save_best_model (bool) – defaults to
True
- max_grad_norm (float) – defaults to
1
- use_amp (bool) – defaults to
False
- callback (Callable[[float, int, int], NoneType]) – defaults to
None
- show_progress_bar (bool) – defaults to
True
- checkpoint_path (str) – defaults to
None
- checkpoint_save_steps (int) – defaults to
500
- checkpoint_save_total_limit (int) – defaults to
0
parameters
Return an iterator over module parameters.
This is typically passed to an optimizer. Args: recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. Yields: Parameter: module parameter Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size())
Parameters
- recurse (bool) – defaults to
True
pool_embeddings_hierarchical
Pools the embeddings hierarchically by clustering and averaging them.
Parameters
- documents_embeddings (list[torch.Tensor])
- pool_factor (int) – defaults to
1
- protected_tokens (int) – defaults to
1
Returns
list[torch.Tensor]: A list of pooled embeddings for each document.
pop
push_to_hub
Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository.
Args: repo_id (str): Repository name for your model in the Hub, including the user or organization. token (str, optional): An authentication token (See https://huggingface.co/settings/token) private (bool, optional): Set to true, for hosting a private model safe_serialization (bool, optional): If true, save the model using safetensors. If false, save the model the traditional PyTorch way commit_message (str, optional): Message to commit while pushing. local_model_path (str, optional): Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded exist_ok (bool, optional): If true, saving to an existing repository is OK. If false, saving only to a new repository is possible replace_model_card (bool, optional): If true, replace an existing model card in the hub with the automatically created model card train_datasets (List[str], optional): Datasets used to train the model. If set, the datasets will be added to the model card in the Hub. Returns: str: The url of the commit of your model in the repository on the Hugging Face Hub.
Parameters
- repo_id (str)
- token (Optional[str]) – defaults to
None
Hugging Face authentication token to download private models. - private (Optional[bool]) – defaults to
None
- safe_serialization (bool) – defaults to
True
- commit_message (str) – defaults to
Add new SentenceTransformer model.
- local_model_path (Optional[str]) – defaults to
None
- exist_ok (bool) – defaults to
False
- replace_model_card (bool) – defaults to
False
- train_datasets (Optional[List[str]]) – defaults to
None
register_backward_hook
Register a backward hook on the module.
This function is deprecated in favor of :meth:~torch.nn.Module.register_full_backward_hook
and the behavior of this function will change in future versions. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]])
register_buffer
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm's running_mean
is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting :attr:persistent
to False
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's :attr:state_dict
. Buffers can be accessed as attributes using given names. Args: name (str): name of the buffer. The buffer can be accessed from this module using the given name tensor (Tensor or None): buffer to be registered. If None
, then operations that run on buffers, such as :attr:cuda
, are ignored. If None
, the buffer is not included in the module's :attr:state_dict
. persistent (bool): whether the buffer is part of this module's :attr:state_dict
. Example:: >>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
Parameters
- name (str)
- tensor (Optional[torch.Tensor])
- persistent (bool) – defaults to
True
register_forward_hook
Register a forward hook on the module.
The hook will be called every time after :func:forward
has computed an output. If with_kwargs
is False
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after :func:forward
is called. The hook should have the following signature:: hook(module, args, output) -> None or modified output If with_kwargs
is True
, the forward hook will be passed the kwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:: hook(module, args, kwargs, output) -> None or modified output Args: hook (Callable): The user defined hook to be registered. prepend (bool): If True
, the provided hook
will be fired before all existing forward
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing forward
hooks on this :class:torch.nn.modules.Module
. Note that global forward
hooks registered with :func:register_module_forward_hook
will fire before all hooks registered by this method. Default: False
with_kwargs (bool): If True
, the hook
will be passed the kwargs given to the forward function. Default: False
always_call (bool): If True
the hook
will be run regardless of whether an exception is raised while calling the Module. Default: False
Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Union[Callable[[~T, Tuple[Any, ...], Any], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]]])
- prepend (bool) – defaults to
False
- with_kwargs (bool) – defaults to
False
- always_call (bool) – defaults to
False
register_forward_pre_hook
Register a forward pre-hook on the module.
The hook will be called every time before :func:forward
is invoked. If with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:: hook(module, args) -> None or modified input If with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:: hook(module, args, kwargs) -> None or a tuple of modified input and kwargs Args: hook (Callable): The user defined hook to be registered. prepend (bool): If true, the provided hook
will be fired before all existing forward_pre
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing forward_pre
hooks on this :class:torch.nn.modules.Module
. Note that global forward_pre
hooks registered with :func:register_module_forward_pre_hook
will fire before all hooks registered by this method. Default: False
with_kwargs (bool): If true, the hook
will be passed the kwargs given to the forward function. Default: False
Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Union[Callable[[~T, Tuple[Any, ...]], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]]])
- prepend (bool) – defaults to
False
- with_kwargs (bool) – defaults to
False
register_full_backward_hook
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:: hook(module, grad_input, grad_output) -> tuple(Tensor) or None The :attr:grad_input
and :attr:grad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of :attr:grad_input
in subsequent computations. :attr:grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in :attr:grad_input
and :attr:grad_output
will be None
for all non-Tensor arguments. For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function. .. warning :: Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error. Args: hook (Callable): The user-defined hook to be registered. prepend (bool): If true, the provided hook
will be fired before all existing backward
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing backward
hooks on this :class:torch.nn.modules.Module
. Note that global backward
hooks registered with :func:register_module_full_backward_hook
will fire before all hooks registered by this method. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]])
- prepend (bool) – defaults to
False
register_full_backward_pre_hook
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:: hook(module, grad_output) -> tuple[Tensor] or None The :attr:grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of :attr:grad_output
in subsequent computations. Entries in :attr:grad_output
will be None
for all non-Tensor arguments. For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function. .. warning :: Modifying inputs inplace is not allowed when using backward hooks and will raise an error. Args: hook (Callable): The user-defined hook to be registered. prepend (bool): If true, the provided hook
will be fired before all existing backward_pre
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing backward_pre
hooks on this :class:torch.nn.modules.Module
. Note that global backward_pre
hooks registered with :func:register_module_full_backward_pre_hook
will fire before all hooks registered by this method. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]])
- prepend (bool) – defaults to
False
register_load_state_dict_post_hook
Register a post hook to be run after module's load_state_dict
is called.
It should have the following signature:: hook(module, incompatible_keys) -> None The module
argument is the current module that this hook is registered on, and the incompatible_keys
argument is a NamedTuple
consisting of attributes missing_keys
and unexpected_keys
. missing_keys
is a list
of str
containing the missing keys and unexpected_keys
is a list
of str
containing the unexpected keys. The given incompatible_keys can be modified inplace if needed. Note that the checks performed when calling :func:load_state_dict
with strict=True
are affected by modifications the hook makes to missing_keys
or unexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown when strict=True
, and clearing out both missing and unexpected keys will avoid an error. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook
register_module
Alias for :func:add_module
.
Parameters
- name (str)
- module (Optional[ForwardRef('Module')])
register_parameter
Add a parameter to the module.
The parameter can be accessed as an attribute using given name. Args: name (str): name of the parameter. The parameter can be accessed from this module using the given name param (Parameter or None): parameter to be added to the module. If None
, then operations that run on parameters, such as :attr:cuda
, are ignored. If None
, the parameter is not included in the module's :attr:state_dict
.
Parameters
- name (str)
- param (Optional[torch.nn.parameter.Parameter])
register_state_dict_pre_hook
Register a pre-hook for the :meth:~torch.nn.Module.state_dict
method.
These hooks will be called with arguments: self
, prefix
, and keep_vars
before calling state_dict
on self
. The registered hooks can be used to perform pre-processing before the state_dict
call is made.
Parameters
- hook
requires_grad_
Change if autograd should record operations on parameters in this module.
This method sets the parameters' :attr:requires_grad
attributes in-place. This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training). See :ref:locally-disable-grad-doc
for a comparison between .requires_grad_()
and several similar mechanisms that may be confused with it. Args: requires_grad (bool): whether autograd should record operations on parameters in this module. Default: True
. Returns: Module: self
Parameters
- requires_grad (bool) – defaults to
True
save
Saves a model and its configuration files to a directory, so that it can be loaded with SentenceTransformer(path)
again.
Args: path (str): Path on disc where the model will be saved. model_name (str, optional): Optional model name. create_model_card (bool, optional): If True, create a README.md with basic information about this model. train_datasets (list[str], optional): Optional list with the names of the datasets used to train the model. safe_serialization (bool, optional): If True, save the model using safetensors. If False, save the model the traditional (but unsafe) PyTorch way.
Parameters
- path (str)
- model_name (str | None) – defaults to
None
- create_model_card (bool) – defaults to
True
- train_datasets (list[str] | None) – defaults to
None
- safe_serialization (bool) – defaults to
True
save_pretrained
Saves a model and its configuration files to a directory, so that it can be loaded with SentenceTransformer(path)
again.
Args: path (str): Path on disc where the model will be saved. model_name (str, optional): Optional model name. create_model_card (bool, optional): If True, create a README.md with basic information about this model. train_datasets (List[str], optional): Optional list with the names of the datasets used to train the model. safe_serialization (bool, optional): If True, save the model using safetensors. If False, save the model the traditional (but unsafe) PyTorch way.
Parameters
- path (str)
- model_name (Optional[str]) – defaults to
None
- create_model_card (bool) – defaults to
True
- train_datasets (Optional[List[str]]) – defaults to
None
- safe_serialization (bool) – defaults to
True
save_to_hub
DEPRECATED, use push_to_hub
instead.
Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository. Args: repo_id (str): Repository name for your model in the Hub, including the user or organization. token (str, optional): An authentication token (See https://huggingface.co/settings/token) private (bool, optional): Set to true, for hosting a private model safe_serialization (bool, optional): If true, save the model using safetensors. If false, save the model the traditional PyTorch way commit_message (str, optional): Message to commit while pushing. local_model_path (str, optional): Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded exist_ok (bool, optional): If true, saving to an existing repository is OK. If false, saving only to a new repository is possible replace_model_card (bool, optional): If true, replace an existing model card in the hub with the automatically created model card train_datasets (List[str], optional): Datasets used to train the model. If set, the datasets will be added to the model card in the Hub. Returns: str: The url of the commit of your model in the repository on the Hugging Face Hub.
Parameters
- repo_id (str)
- organization (Optional[str]) – defaults to
None
- token (Optional[str]) – defaults to
None
Hugging Face authentication token to download private models. - private (Optional[bool]) – defaults to
None
- safe_serialization (bool) – defaults to
True
- commit_message (str) – defaults to
Add new SentenceTransformer model.
- local_model_path (Optional[str]) – defaults to
None
- exist_ok (bool) – defaults to
False
- replace_model_card (bool) – defaults to
False
- train_datasets (Optional[List[str]]) – defaults to
None
set_extra_state
Set extra state contained in the loaded state_dict
.
This function is called from :func:load_state_dict
to handle any extra state found within the state_dict
. Implement this function and a corresponding :func:get_extra_state
for your module if you need to store extra state within its state_dict
. Args: state (dict): Extra state from the state_dict
Parameters
- state (Any)
set_pooling_include_prompt
Sets the include_prompt
attribute in the pooling layer in the model, if there is one.
This is useful for INSTRUCTOR models, as the prompt should be excluded from the pooling strategy for these models. Args: include_prompt (bool): Whether to include the prompt in the pooling layer. Returns: None
Parameters
- include_prompt (bool)
share_memory
See :meth:torch.Tensor.share_memory_
.
skiplist_mask
Create a mask for the set of input_ids that are in the skiplist.
Parameters
- input_ids (torch.Tensor)
- skiplist (list[int])
smart_batching_collate
Transforms a batch from a SmartBatchingDataset to a batch of tensors for the model Here, batch is a list of InputExample instances: [InputExample(...), ...]
Args: batch: a batch from a SmartBatchingDataset Returns: a batch of tensors for the model
Parameters
- batch (List[ForwardRef('InputExample')])
start_multi_process_pool
Starts a multi-process pool to process the encoding with several independent processes. This method is recommended if you want to encode on multiple GPUs or CPUs. It is advised to start only one process per GPU. This method works together with encode_multi_process and stop_multi_process_pool.
Parameters
- target_devices (list[str]) – defaults to
None
Returns
dict: A dictionary with the target processes, an input queue, and an output queue.
state_dict
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None
are not included. .. note:: The returned object is a shallow copy. It contains references to the module's parameters and buffers. .. warning:: Currently state_dict()
also accepts positional arguments for destination
, prefix
and keep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases. .. warning:: Please avoid the use of argument destination
as it is not designed for end-users. Args: destination (dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an OrderedDict
will be created and returned. Default: None
. prefix (str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default: ''
. keep_vars (bool, optional): by default the :class:~torch.Tensor
s returned in the state dict are detached from autograd. If it's set to True
, detaching will not be performed. Default: False
. Returns: dict: a dictionary containing a whole state of the module Example:: >>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
Parameters
- args
- destination – defaults to
None
- prefix – defaults to ``
- keep_vars – defaults to
False
stop_multi_process_pool
Stops all processes started with start_multi_process_pool.
Args: pool (Dict[str, object]): A dictionary containing the input queue, output queue, and process list. Returns: None
- pool (Dict[Literal['input', 'output', 'processes'], Any])
to
Move and/or cast the parameters and buffers.
This can be called as .. function:: to(device=None, dtype=None, non_blocking=False) :noindex: .. function:: to(dtype, non_blocking=False) :noindex: .. function:: to(tensor, non_blocking=False) :noindex: .. function:: to(memory_format=torch.channels_last) :noindex: Its signature is similar to :meth:torch.Tensor.to
, but only accepts floating point or complex :attr:dtype
\ s. In addition, this method will only cast the floating point or complex parameters and buffers to :attr:dtype
(if given). The integral parameters and buffers will be moved :attr:device
, if that is given, but with dtypes unchanged. When :attr:non_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples. .. note:: This method modifies the module in-place. Args: device (:class:torch.device
): the desired device of the parameters and buffers in this module dtype (:class:torch.dtype
): the desired floating point or complex dtype of the parameters and buffers in this module tensor (torch.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module memory_format (:class:torch.memory_format
): the desired memory format for 4D parameters and buffers in this module (keyword only argument) Returns: Module: self Examples:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
Parameters
- args
- kwargs
to_empty
Move the parameters and buffers to the specified device without copying storage.
Args: device (:class:torch.device
): The desired device of the parameters and buffers in this module. recurse (bool): Whether parameters and buffers of submodules should be recursively moved to the specified device. Returns: Module: self
Parameters
- device (Union[int, str, torch.device, NoneType])
Device (like "cuda", "cpu", "mps", "npu") that should be used for computation. If None, checks if a GPU can be used. - recurse (bool) – defaults to
True
tokenize
Tokenizes the input texts.
Args: texts (Union[list[str], list[dict], list[tuple[str, str]]]): A list of texts to be tokenized. is_query (bool): Flag to indicate if the texts are queries. Defaults to True. pad_document (bool): Flag to indicate if documents should be padded to max length. Defaults to False. Returns: dict[str, torch.Tensor]: A dictionary of tensors with the tokenized texts, including "input_ids", "attention_mask", and optionally "token_type_ids".
Parameters
- texts (list[str] | list[dict] | list[tuple[str, str]])
- is_query (bool) – defaults to
True
- pad_document (bool) – defaults to
False
train
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
, etc. Args: mode (bool): whether to set training mode (True
) or evaluation mode (False
). Default: True
. Returns: Module: self
Parameters
- mode (bool) – defaults to
True
truncate_sentence_embeddings
In this context, :meth:SentenceTransformer.encode <sentence_transformers.SentenceTransformer.encode>
outputs sentence embeddings truncated at dimension truncate_dim
.
This may be useful when you are using the same model for different applications where different dimensions are needed. Args: truncate_dim (int, optional): The dimension to truncate sentence embeddings to. None
does no truncation. Example: :: from sentence_transformers import SentenceTransformer model = SentenceTransformer("all-mpnet-base-v2") with model.truncate_sentence_embeddings(truncate_dim=16): embeddings_truncated = model.encode(["hello there", "hiya"]) assert embeddings_truncated.shape[-1] == 16
Parameters
- truncate_dim (Optional[int])
The dimension to truncate sentence embeddings to.None
does no truncation. Truncation is only applicable during inference when :meth:SentenceTransformer.encode
is called.
type
Casts all parameters and buffers to :attr:dst_type
.
.. note:: This method modifies the module in-place. Args: dst_type (type or string): the desired type Returns: Module: self
Parameters
- dst_type (Union[torch.dtype, str])
xpu
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized. .. note:: This method modifies the module in-place. Arguments: device (int, optional): if specified, all parameters will be copied to that device Returns: Module: self
Parameters
- device (Union[int, torch.device, NoneType]) – defaults to
None
Device (like "cuda", "cpu", "mps", "npu") that should be used for computation. If None, checks if a GPU can be used.
zero_grad
Reset gradients of all model parameters.
See similar function under :class:torch.optim.Optimizer
for more context. Args: set_to_none (bool): instead of setting to zero, set the grads to None. See :meth:torch.optim.Optimizer.zero_grad
for details.
Parameters
- set_to_none (bool) – defaults to
True