Contrastive¶
Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased.
Parameters¶
-
model (models.ColBERT)
ColBERT model.
-
score_metric – defaults to
<function colbert_scores at 0x10549bc40>
ColBERT scoring function. Defaults to colbert_scores.
-
size_average (bool) – defaults to
True
Average by the size of the mini-batch.
Examples¶
>>> from pylate import models, losses
>>> model = models.ColBERT(
... model_name_or_path="sentence-transformers/all-MiniLM-L6-v2", device="cpu"
... )
>>> loss = losses.Contrastive(model=model)
>>> anchor = model.tokenize([
... "fruits are healthy.",
... ], is_query=True)
>>> positive = model.tokenize([
... "fruits are good for health.",
... ], is_query=False)
>>> negative = model.tokenize([
... "fruits are bad for health.",
... ], is_query=False)
>>> sentence_features = [anchor, positive, negative]
>>> loss = loss(sentence_features=sentence_features)
>>> assert isinstance(loss.item(), float)
Methods¶
call
Call self as a function.
Parameters
- args
- kwargs
add_module
Add a child module to the current module.
The module can be accessed as an attribute using the given name. Args: name (str): name of the child module. The child module can be accessed from this module using the given name module (Module): child module to be added to the module.
Parameters
- name (str)
- module (Optional[ForwardRef('Module')])
apply
Apply fn
recursively to every submodule (as returned by .children()
) as well as self.
Typical use includes initializing the parameters of a model (see also :ref:nn-init-doc
). Args: fn (:class:Module
-> None): function to be applied to each submodule Returns: Module: self Example:: >>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
Parameters
- fn (Callable[[ForwardRef('Module')], NoneType])
bfloat16
Casts all floating point parameters and buffers to bfloat16
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
buffers
Return an iterator over module buffers.
Args: recurse (bool): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Yields: torch.Tensor: module buffer Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size())
Parameters
- recurse (bool) – defaults to
True
children
Return an iterator over immediate children modules.
Yields: Module: a child module
compile
Compile this Module's forward using :func:torch.compile
.
This Module's __call__
method is compiled and all arguments are passed as-is to :func:torch.compile
. See :func:torch.compile
for details on the arguments for this function.
Parameters
- args
- kwargs
cpu
Move all model parameters and buffers to the CPU.
.. note:: This method modifies the module in-place. Returns: Module: self
cuda
Move all model parameters and buffers to the GPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized. .. note:: This method modifies the module in-place. Args: device (int, optional): if specified, all parameters will be copied to that device Returns: Module: self
Parameters
- device (Union[int, torch.device, NoneType]) – defaults to
None
double
Casts all floating point parameters and buffers to double
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
eval
Set the module in evaluation mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
, etc. This is equivalent with :meth:self.train(False) <torch.nn.Module.train>
. See :ref:locally-disable-grad-doc
for a comparison between .eval()
and several similar mechanisms that may be confused with it. Returns: Module: self
extra_repr
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
float
Casts all floating point parameters and buffers to float
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
forward
Compute the Constrastive loss.
Parameters
- sentence_features (Iterable[dict[str, torch.Tensor]])
- labels (torch.Tensor | None) – defaults to
None
get_buffer
Return the buffer given by target
if it exists, otherwise throw an error.
See the docstring for get_submodule
for a more detailed explanation of this method's functionality as well as how to correctly specify target
. Args: target: The fully-qualified string name of the buffer to look for. (See get_submodule
for how to specify a fully-qualified string.) Returns: torch.Tensor: The buffer referenced by target
Raises: AttributeError: If the target string references an invalid path or resolves to something that is not a buffer
Parameters
- target (str)
get_extra_state
Return any extra state to include in the module's state_dict.
Implement this and a corresponding :func:set_extra_state
for your module if you need to store extra state. This function is called when building the module's state_dict()
. Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes. Returns: object: Any extra state to store in the module's state_dict
get_parameter
Return the parameter given by target
if it exists, otherwise throw an error.
See the docstring for get_submodule
for a more detailed explanation of this method's functionality as well as how to correctly specify target
. Args: target: The fully-qualified string name of the Parameter to look for. (See get_submodule
for how to specify a fully-qualified string.) Returns: torch.nn.Parameter: The Parameter referenced by target
Raises: AttributeError: If the target string references an invalid path or resolves to something that is not an nn.Parameter
Parameters
- target (str)
get_submodule
Return the submodule given by target
if it exists, otherwise throw an error.
For example, let's say you have an nn.Module
A
that looks like this: .. code-block:: text A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) ) (The diagram shows an nn.Module
A
. A
has a nested submodule net_b
, which itself has two submodules net_c
and linear
. net_c
then has a submodule conv
.) To check whether or not we have the linear
submodule, we would call get_submodule("net_b.linear")
. To check whether we have the conv
submodule, we would call get_submodule("net_b.net_c.conv")
. The runtime of get_submodule
is bounded by the degree of module nesting in target
. A query against named_modules
achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule
should always be used. Args: target: The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.) Returns: torch.nn.Module: The submodule referenced by target
Raises: AttributeError: If the target string references an invalid path or resolves to something that is not an nn.Module
Parameters
- target (str)
half
Casts all floating point parameters and buffers to half
datatype.
.. note:: This method modifies the module in-place. Returns: Module: self
ipu
Move all model parameters and buffers to the IPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized. .. note:: This method modifies the module in-place. Arguments: device (int, optional): if specified, all parameters will be copied to that device Returns: Module: self
Parameters
- device (Union[int, torch.device, NoneType]) – defaults to
None
load_state_dict
Copy parameters and buffers from :attr:state_dict
into this module and its descendants.
If :attr:strict
is True
, then the keys of :attr:state_dict
must exactly match the keys returned by this module's :meth:~torch.nn.Module.state_dict
function. .. warning:: If :attr:assign
is True
the optimizer must be created after the call to :attr:load_state_dict
unless :func:~torch.__future__.get_swap_module_params_on_conversion
is True
. Args: state_dict (dict): a dict containing parameters and persistent buffers. strict (bool, optional): whether to strictly enforce that the keys in :attr:state_dict
match the keys returned by this module's :meth:~torch.nn.Module.state_dict
function. Default: True
assign (bool, optional): When False
, the properties of the tensors in the current module are preserved while when True
, the properties of the Tensors in the state dict are preserved. The only exception is the requires_grad
field of :class:~torch.nn.Parameter
s for which the value from the module is preserved. Default: False
Returns: NamedTuple
with missing_keys
and unexpected_keys
fields: * missing_keys is a list of str containing any keys that are expected by this module but missing from the provided state_dict
. * unexpected_keys is a list of str containing the keys that are not expected by this module but present in the provided state_dict
. Note: If a parameter or buffer is registered as None
and its corresponding key exists in :attr:state_dict
, :meth:load_state_dict
will raise a RuntimeError
.
Parameters
- state_dict (Mapping[str, Any])
- strict (bool) – defaults to
True
- assign (bool) – defaults to
False
modules
Return an iterator over all modules in the network.
Yields: Module: a module in the network Note: Duplicate modules are returned only once. In the following example, l
will be returned only once. Example:: >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
named_buffers
Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Args: prefix (str): prefix to prepend to all buffer names. recurse (bool, optional): if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True. Yields: (str, torch.Tensor): Tuple containing the name and buffer Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
Parameters
- prefix (str) – defaults to ``
- recurse (bool) – defaults to
True
- remove_duplicate (bool) – defaults to
True
named_children
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
Yields: (str, Module): Tuple containing a name and child module Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
named_modules
Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
Args: memo: a memo to store the set of modules already added to the result prefix: a prefix that will be added to the name of the module remove_duplicate: whether to remove the duplicated module instances in the result or not Yields: (str, Module): Tuple of name and module Note: Duplicate modules are returned only once. In the following example, l
will be returned only once. Example:: >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
Parameters
- memo (Optional[Set[ForwardRef('Module')]]) – defaults to
None
- prefix (str) – defaults to ``
- remove_duplicate (bool) – defaults to
True
named_parameters
Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
Args: prefix (str): prefix to prepend to all parameter names. recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. remove_duplicate (bool, optional): whether to remove the duplicated parameters in the result. Defaults to True. Yields: (str, Parameter): Tuple containing the name and parameter Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
Parameters
- prefix (str) – defaults to ``
- recurse (bool) – defaults to
True
- remove_duplicate (bool) – defaults to
True
parameters
Return an iterator over module parameters.
This is typically passed to an optimizer. Args: recurse (bool): if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. Yields: Parameter: module parameter Example:: >>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size())
Parameters
- recurse (bool) – defaults to
True
register_backward_hook
Register a backward hook on the module.
This function is deprecated in favor of :meth:~torch.nn.Module.register_full_backward_hook
and the behavior of this function will change in future versions. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]])
register_buffer
Add a buffer to the module.
This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm's running_mean
is not a parameter, but is part of the module's state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting :attr:persistent
to False
. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module's :attr:state_dict
. Buffers can be accessed as attributes using given names. Args: name (str): name of the buffer. The buffer can be accessed from this module using the given name tensor (Tensor or None): buffer to be registered. If None
, then operations that run on buffers, such as :attr:cuda
, are ignored. If None
, the buffer is not included in the module's :attr:state_dict
. persistent (bool): whether the buffer is part of this module's :attr:state_dict
. Example:: >>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
Parameters
- name (str)
- tensor (Optional[torch.Tensor])
- persistent (bool) – defaults to
True
register_forward_hook
Register a forward hook on the module.
The hook will be called every time after :func:forward
has computed an output. If with_kwargs
is False
or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward
. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after :func:forward
is called. The hook should have the following signature:: hook(module, args, output) -> None or modified output If with_kwargs
is True
, the forward hook will be passed the kwargs
given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:: hook(module, args, kwargs, output) -> None or modified output Args: hook (Callable): The user defined hook to be registered. prepend (bool): If True
, the provided hook
will be fired before all existing forward
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing forward
hooks on this :class:torch.nn.modules.Module
. Note that global forward
hooks registered with :func:register_module_forward_hook
will fire before all hooks registered by this method. Default: False
with_kwargs (bool): If True
, the hook
will be passed the kwargs given to the forward function. Default: False
always_call (bool): If True
the hook
will be run regardless of whether an exception is raised while calling the Module. Default: False
Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Union[Callable[[~T, Tuple[Any, ...], Any], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]]])
- prepend (bool) – defaults to
False
- with_kwargs (bool) – defaults to
False
- always_call (bool) – defaults to
False
register_forward_pre_hook
Register a forward pre-hook on the module.
The hook will be called every time before :func:forward
is invoked. If with_kwargs
is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the forward
. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:: hook(module, args) -> None or modified input If with_kwargs
is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:: hook(module, args, kwargs) -> None or a tuple of modified input and kwargs Args: hook (Callable): The user defined hook to be registered. prepend (bool): If true, the provided hook
will be fired before all existing forward_pre
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing forward_pre
hooks on this :class:torch.nn.modules.Module
. Note that global forward_pre
hooks registered with :func:register_module_forward_pre_hook
will fire before all hooks registered by this method. Default: False
with_kwargs (bool): If true, the hook
will be passed the kwargs given to the forward function. Default: False
Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Union[Callable[[~T, Tuple[Any, ...]], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]]])
- prepend (bool) – defaults to
False
- with_kwargs (bool) – defaults to
False
register_full_backward_hook
Register a backward hook on the module.
The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:: hook(module, grad_input, grad_output) -> tuple(Tensor) or None The :attr:grad_input
and :attr:grad_output
are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of :attr:grad_input
in subsequent computations. :attr:grad_input
will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in :attr:grad_input
and :attr:grad_output
will be None
for all non-Tensor arguments. For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function. .. warning :: Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error. Args: hook (Callable): The user-defined hook to be registered. prepend (bool): If true, the provided hook
will be fired before all existing backward
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing backward
hooks on this :class:torch.nn.modules.Module
. Note that global backward
hooks registered with :func:register_module_full_backward_hook
will fire before all hooks registered by this method. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]])
- prepend (bool) – defaults to
False
register_full_backward_pre_hook
Register a backward pre-hook on the module.
The hook will be called every time the gradients for the module are computed. The hook should have the following signature:: hook(module, grad_output) -> tuple[Tensor] or None The :attr:grad_output
is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of :attr:grad_output
in subsequent computations. Entries in :attr:grad_output
will be None
for all non-Tensor arguments. For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module's forward function. .. warning :: Modifying inputs inplace is not allowed when using backward hooks and will raise an error. Args: hook (Callable): The user-defined hook to be registered. prepend (bool): If true, the provided hook
will be fired before all existing backward_pre
hooks on this :class:torch.nn.modules.Module
. Otherwise, the provided hook
will be fired after all existing backward_pre
hooks on this :class:torch.nn.modules.Module
. Note that global backward_pre
hooks registered with :func:register_module_full_backward_pre_hook
will fire before all hooks registered by this method. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook (Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]])
- prepend (bool) – defaults to
False
register_load_state_dict_post_hook
Register a post hook to be run after module's load_state_dict
is called.
It should have the following signature:: hook(module, incompatible_keys) -> None The module
argument is the current module that this hook is registered on, and the incompatible_keys
argument is a NamedTuple
consisting of attributes missing_keys
and unexpected_keys
. missing_keys
is a list
of str
containing the missing keys and unexpected_keys
is a list
of str
containing the unexpected keys. The given incompatible_keys can be modified inplace if needed. Note that the checks performed when calling :func:load_state_dict
with strict=True
are affected by modifications the hook makes to missing_keys
or unexpected_keys
, as expected. Additions to either set of keys will result in an error being thrown when strict=True
, and clearing out both missing and unexpected keys will avoid an error. Returns: :class:torch.utils.hooks.RemovableHandle
: a handle that can be used to remove the added hook by calling handle.remove()
Parameters
- hook
register_module
Alias for :func:add_module
.
Parameters
- name (str)
- module (Optional[ForwardRef('Module')])
register_parameter
Add a parameter to the module.
The parameter can be accessed as an attribute using given name. Args: name (str): name of the parameter. The parameter can be accessed from this module using the given name param (Parameter or None): parameter to be added to the module. If None
, then operations that run on parameters, such as :attr:cuda
, are ignored. If None
, the parameter is not included in the module's :attr:state_dict
.
Parameters
- name (str)
- param (Optional[torch.nn.parameter.Parameter])
register_state_dict_pre_hook
Register a pre-hook for the :meth:~torch.nn.Module.state_dict
method.
These hooks will be called with arguments: self
, prefix
, and keep_vars
before calling state_dict
on self
. The registered hooks can be used to perform pre-processing before the state_dict
call is made.
Parameters
- hook
requires_grad_
Change if autograd should record operations on parameters in this module.
This method sets the parameters' :attr:requires_grad
attributes in-place. This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training). See :ref:locally-disable-grad-doc
for a comparison between .requires_grad_()
and several similar mechanisms that may be confused with it. Args: requires_grad (bool): whether autograd should record operations on parameters in this module. Default: True
. Returns: Module: self
Parameters
- requires_grad (bool) – defaults to
True
set_extra_state
Set extra state contained in the loaded state_dict
.
This function is called from :func:load_state_dict
to handle any extra state found within the state_dict
. Implement this function and a corresponding :func:get_extra_state
for your module if you need to store extra state within its state_dict
. Args: state (dict): Extra state from the state_dict
Parameters
- state (Any)
share_memory
See :meth:torch.Tensor.share_memory_
.
state_dict
Return a dictionary containing references to the whole state of the module.
Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None
are not included. .. note:: The returned object is a shallow copy. It contains references to the module's parameters and buffers. .. warning:: Currently state_dict()
also accepts positional arguments for destination
, prefix
and keep_vars
in order. However, this is being deprecated and keyword arguments will be enforced in future releases. .. warning:: Please avoid the use of argument destination
as it is not designed for end-users. Args: destination (dict, optional): If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an OrderedDict
will be created and returned. Default: None
. prefix (str, optional): a prefix added to parameter and buffer names to compose the keys in state_dict. Default: ''
. keep_vars (bool, optional): by default the :class:~torch.Tensor
s returned in the state dict are detached from autograd. If it's set to True
, detaching will not be performed. Default: False
. Returns: dict: a dictionary containing a whole state of the module Example:: >>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
Parameters
- args
- destination – defaults to
None
- prefix – defaults to ``
- keep_vars – defaults to
False
to
Move and/or cast the parameters and buffers.
This can be called as .. function:: to(device=None, dtype=None, non_blocking=False) :noindex: .. function:: to(dtype, non_blocking=False) :noindex: .. function:: to(tensor, non_blocking=False) :noindex: .. function:: to(memory_format=torch.channels_last) :noindex: Its signature is similar to :meth:torch.Tensor.to
, but only accepts floating point or complex :attr:dtype
\ s. In addition, this method will only cast the floating point or complex parameters and buffers to :attr:dtype
(if given). The integral parameters and buffers will be moved :attr:device
, if that is given, but with dtypes unchanged. When :attr:non_blocking
is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples. .. note:: This method modifies the module in-place. Args: device (:class:torch.device
): the desired device of the parameters and buffers in this module dtype (:class:torch.dtype
): the desired floating point or complex dtype of the parameters and buffers in this module tensor (torch.Tensor): Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module memory_format (:class:torch.memory_format
): the desired memory format for 4D parameters and buffers in this module (keyword only argument) Returns: Module: self Examples:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
Parameters
- args
- kwargs
to_empty
Move the parameters and buffers to the specified device without copying storage.
Args: device (:class:torch.device
): The desired device of the parameters and buffers in this module. recurse (bool): Whether parameters and buffers of submodules should be recursively moved to the specified device. Returns: Module: self
Parameters
- device (Union[int, str, torch.device, NoneType])
- recurse (bool) – defaults to
True
train
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:Dropout
, :class:BatchNorm
, etc. Args: mode (bool): whether to set training mode (True
) or evaluation mode (False
). Default: True
. Returns: Module: self
Parameters
- mode (bool) – defaults to
True
type
Casts all parameters and buffers to :attr:dst_type
.
.. note:: This method modifies the module in-place. Args: dst_type (type or string): the desired type Returns: Module: self
Parameters
- dst_type (Union[torch.dtype, str])
xpu
Move all model parameters and buffers to the XPU.
This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized. .. note:: This method modifies the module in-place. Arguments: device (int, optional): if specified, all parameters will be copied to that device Returns: Module: self
Parameters
- device (Union[int, torch.device, NoneType]) – defaults to
None
zero_grad
Reset gradients of all model parameters.
See similar function under :class:torch.optim.Optimizer
for more context. Args: set_to_none (bool): instead of setting to zero, set the grads to None. See :meth:torch.optim.Optimizer.zero_grad
for details.
Parameters
- set_to_none (bool) – defaults to
True