PyLateInformationRetrievalEvaluator¶
This class evaluates an Information Retrieval (IR) setting. This is a direct extension of the InformationRetrievalEvaluator from the sentence-transformers library, only override the compute_metrices method to be compilatible with PyLate models (define assymetric encoding using is_query params and add padding).
Parameters¶
-
queries ('dict[str, str]')
-
corpus ('dict[str, str]')
-
relevant_docs ('dict[str, set[str]]')
-
corpus_chunk_size ('int') – defaults to
50000
-
mrr_at_k ('list[int]') – defaults to
[10]
-
ndcg_at_k ('list[int]') – defaults to
[10]
-
accuracy_at_k ('list[int]') – defaults to
[1, 3, 5, 10]
-
precision_recall_at_k ('list[int]') – defaults to
[1, 3, 5, 10]
-
map_at_k ('list[int]') – defaults to
[100]
-
show_progress_bar ('bool') – defaults to
False
-
batch_size ('int') – defaults to
32
-
name ('str') – defaults to ``
-
write_csv ('bool') – defaults to
True
-
truncate_dim ('int | None') – defaults to
None
-
score_functions ('dict[str, Callable[[Tensor, Tensor], Tensor]] | None') – defaults to
None
-
main_score_function ('str | SimilarityFunction | None') – defaults to
None
-
query_prompt ('str | None') – defaults to
None
-
query_prompt_name ('str | None') – defaults to
None
-
corpus_prompt ('str | None') – defaults to
None
-
corpus_prompt_name ('str | None') – defaults to
None
Attributes¶
-
description
Returns a human-readable description of the evaluator: BinaryClassificationEvaluator -> Binary Classification 1. Remove "Evaluator" from the class name 2. Add a space before every capital letter
Methods¶
call
This is called during training to evaluate the model. It returns a score for the evaluation with a higher score indicating a better result.
Args: model: the model to evaluate output_path: path where predictions and metrics are written to epoch: the epoch where the evaluation takes place. This is used for the file prefixes. If this is -1, then we assume evaluation on test data. steps: the steps in the current epoch at time of the evaluation. This is used for the file prefixes. If this is -1, then we assume evaluation at the end of the epoch. Returns: Either a score for the evaluation with a higher score indicating a better result, or a dictionary with scores. If the latter is chosen, then evaluator.primary_metric
must be defined
Parameters
- model ('SentenceTransformer')
- output_path ('str') – defaults to
None
- epoch ('int') – defaults to
-1
- steps ('int') – defaults to
-1
- args
- kwargs