ColGREP
Semantic code search for your terminal and your coding agents, built on NextPlaid.
Combines regex filtering with semantic ranking with LateOn-Code-edge multi-vector embeddings.
A single Rust binary. No server. No API. 100% local, your code never leaves your machine.
Quick Start · Search Modes · Agent Integrations · How It Works · Installation
Quick Start
Install:
# macOS / Linux
curl --proto '=https' --tlsv1.2 -LsSf https://github.com/lightonai/next-plaid/releases/latest/download/colgrep-installer.sh | sh
# Windows (PowerShell)
powershell -c "irm https://github.com/lightonai/next-plaid/releases/latest/download/colgrep-installer.ps1 | iex"
> macOS binaries ship with Apple Accelerate + CoreML enabled — full hardware acceleration out of the box. > > Linux & Windows binaries work immediately but run on CPU only. For hardware acceleration, install via Cargo — see Installation.
Build the index:
colgrep init # current directory
colgrep init /path/to/project # or a specific project
colgrep init -y # auto-confirm for large codebases (>10K code units)
Search:
colgrep "database connection pooling"
No setup, no config, no dependencies. colgrep init builds the index for the first time. After that, every search detects file changes and updates the index automatically before returning results. Supports --model to override the ColBERT model and --pool-factor to control embedding compression.
Search Modes
ColGREP supports three search modes: semantic, regex, and hybrid (both combined).
Semantic Search
Find code by meaning, even when keywords don't match exactly:
colgrep "function that retries HTTP requests"
colgrep "error handling in API layer"
colgrep "authentication middleware" ./src
Regex Search
Use -e for traditional pattern matching (ERE syntax by default):
colgrep -e "async fn\s+\w+"
colgrep -e "TODO|FIXME|HACK"
colgrep -e "impl\s+Display" --include="*.rs"
Hybrid Search
Combine regex filtering with semantic ranking. Regex narrows the candidates, semantics ranks them:
# Find async functions, rank by "error handling"
colgrep -e "async fn" "error handling"
# Find Result types, rank by "database operations"
colgrep -e "Result<" "database operations" --include="*.rs"
# Find TODOs, rank by relevance to "security"
colgrep -e "TODO" "security concerns"
CLI Reference
Search Options
| Flag | Long | Description |
|---|---|---|
-e | --pattern | Regex pre-filter (ERE syntax) |
-E | --extended-regexp | ERE mode (default, kept for grep compat) |
-F | --fixed-strings | Treat -e as literal string |
-w | --word-regexp | Whole-word match for -e |
-k | --results | Number of results (default: 15) |
-n | --lines | Context lines to show (default: 6) |
-l | --files-only | List matching files only |
-c | --content | Show full function/class content |
-r | --recursive | Recursive (default, for grep compat) |
-y | --yes | Auto-confirm indexing |
--json | JSON output | |
--code-only | Skip docs/config files | |
--include | Filter by glob (e.g., "*.rs") | |
--exclude | Exclude files by glob | |
--exclude-dir | Exclude directories | |
--model | Override ColBERT model | |
--no-pool | Disable embedding pooling | |
--pool-factor | Set pool factor (default: 2) |
Filtering
# By file extension
colgrep --include="*.py" "database query"
colgrep --include="*.{ts,tsx}" "React component"
# By path pattern
colgrep --include="src/**/*.rs" "config parsing"
colgrep --include="**/tests/**" "test helper"
# Exclude files or directories
colgrep --exclude="*.test.ts" "component"
colgrep --exclude-dir="vendor" --exclude-dir="node_modules" "import"
# Search specific paths
colgrep "error handling" ./src/api ./src/auth
# Code-only (skip markdown, yaml, json, etc.)
colgrep --code-only "authentication logic"
Glob pattern syntax:
| Pattern | Matches |
|---|---|
*.py | All Python files |
*.{ts,tsx} | TypeScript and TSX files |
src/**/*.rs | Rust files under src/ |
**/tests/** | Files in any tests/ directory |
*_test.go | Go test files |
Output Modes
# Default: filepath:lines with context
colgrep "authentication"
# Files only (like grep -l)
colgrep -l "database queries"
# Full content with syntax highlighting
colgrep -c "authentication handler" -k 5
# JSON for scripting
colgrep --json "auth" | jq '.[] | .unit.file'
Subcommands
| Command | Description |
|---|---|
colgrep init | Build or update the index |
colgrep status | Show index status for current project |
colgrep clear | Clear index for current project |
colgrep clear --all | Clear all indexes |
colgrep set-model <ID> | Change the default ColBERT model |
colgrep settings | View or modify configuration |
colgrep --stats | Show search statistics for all indexes |
Configuration
# Show current config
colgrep settings
# Set default results count
colgrep settings --k 20
# Set default context lines
colgrep settings --n 10
# Use INT8 quantized model (faster inference)
colgrep settings --int8
# Use FP32 full precision (more accurate)
colgrep settings --fp32
# Set embedding pool factor (2 = 50% smaller index, 1 = full precision)
colgrep settings --pool-factor 2
# Set parallel encoding sessions (default: CPU count, max 16)
colgrep settings --parallel 8
# Set batch size per session (default: 1 for CPU, 64 for CUDA)
colgrep settings --batch-size 2
# Enable verbose output by default
colgrep settings --verbose
# Reset a value to default (pass 0)
colgrep settings --k 0 --n 0
Change Model
# Temporary (single query)
colgrep "query" --model lightonai/LateOn-Code
# Permanent (clears existing indexes)
colgrep set-model lightonai/LateOn-Code
# Private HuggingFace model
HF_TOKEN=hf_xxx colgrep set-model myorg/private-model
Config stored at ~/.config/colgrep/config.json.
Agent Integrations
| Agent | Install | Uninstall |
|---|---|---|
| Claude Code | colgrep --install-claude-code | colgrep --uninstall-claude-code |
| OpenCode | colgrep --install-opencode | colgrep --uninstall-opencode |
| Codex | colgrep --install-codex | colgrep --uninstall-codex |
Claude Code Integration
The Claude Code integration installs session and task hooks that:
- Inject colgrep usage instructions into the agent's system prompt
- Check index health before activating (skips if >3000 chunks need indexing or index is desynced)
- Propagate colgrep instructions to spawned sub-agents via task hooks
This means Claude Code automatically uses colgrep as its primary search tool when the index is ready.
Complete Uninstall
Remove colgrep from all AI tools, clear all indexes, and delete all data:
colgrep --uninstall
How It Works
flowchart TD
A["Your codebase"] --> B["Tree-sitter"]
B --> C["Structured representation"]
C --> D["LateOn-Code-edge · 17M"]
D --> E["NextPlaid"]
E --> F["Search"]
B -.- B1["Parse functions, methods, classes"]
C -.- C1["Signature, params, calls, docstring, code"]
D -.- D1["Multi-vector embedding per code unit · runs on CPU"]
E -.- E1["Rust index binary · quantized · memory-mapped · incremental"]
F -.- F1["grep-compatible flags · SQLite filtering · semantic ranking
100% local, your code never leaves your machine"]
style A fill:#4a90d9,stroke:#357abd,color:#fff
style B fill:#50b86c,stroke:#3d9956,color:#fff
style C fill:#50b86c,stroke:#3d9956,color:#fff
style D fill:#e8913a,stroke:#d07a2e,color:#fff
style E fill:#e8913a,stroke:#d07a2e,color:#fff
style F fill:#9b59b6,stroke:#8445a0,color:#fff
style B1 fill:none,stroke:#888,stroke-dasharray:5 5,color:#888
style C1 fill:none,stroke:#888,stroke-dasharray:5 5,color:#888
style D1 fill:none,stroke:#888,stroke-dasharray:5 5,color:#888
style E1 fill:none,stroke:#888,stroke-dasharray:5 5,color:#888
style F1 fill:none,stroke:#888,stroke-dasharray:5 5,color:#888
1. Parse
Tree-sitter parses source files into ASTs and extracts code units: functions, methods, classes, constants, and raw code blocks (module-level statements not covered by other units). This gives 100% file coverage.
2. Analyze (5 Layers)
Each code unit is enriched with five layers of analysis:
| Layer | Extracts | Example |
|---|---|---|
| AST | Signature, parameters, return type, docstring, parent class | def fetch(url: str) -> Response |
| Call Graph | Outgoing calls + reverse called_by | Calls: range, client.get |
| Control Flow | Loops, branches, error handling, cyclomatic complexity | has_error_handling: true |
| Data Flow | Variable declarations and assignments | Variables: i, e |
| Dependencies | Imports used within the function | Uses: client, RequestError |
3. Build Structured Text
Each unit is converted to a structured text representation before embedding. This gives the model richer signal than raw code alone:
Function: fetch_with_retry
Signature: def fetch_with_retry(url: str, max_retries: int = 3) -> Response
Description: Fetches data from a URL with retry logic.
Parameters: url, max_retries
Returns: Response
Calls: range, client.get
Variables: i, e
Uses: client, RequestError
Code:
def fetch_with_retry(url: str, max_retries: int = 3) -> Response:
"""Fetches data from a URL with retry logic."""
for i in range(max_retries):
try:
return client.get(url)
except RequestError as e:
if i == max_retries - 1:
raise e
File: src / utils / http client http_client.py
File paths are normalized for better semantic matching: separators become spaces, snake_case and CamelCase are split (e.g., HttpClient → http client).
4. Encode with ColBERT
The ColBERT model produces multi-vector embeddings: ~300 token-level vectors of dimension 128 per code unit (instead of a single vector). At query time, each query token finds its best match across all document tokens (MaxSim scoring). This preserves fine-grained information that single-vector models lose.
The default model is LateOn-Code-edge (17M parameters), optimized for code search and fast enough to run on CPU.
5. Index with PLAID
The PLAID algorithm compresses multi-vector embeddings with product quantization (2-bit or 4-bit) and stores them in a memory-mapped index. Embedding pooling (default factor: 2) further reduces index size by ~50%. Indexes support incremental updates so only changed files are re-encoded.
6. Search
The search pipeline:
- Encode the query with ColBERT (single ONNX session, fast)
- Pre-filter by metadata if
--include,--exclude,--exclude-diror--code-onlyare set (SQLite) - If
-epattern is provided: regex filter candidates, then score semantically - MaxSim scoring against the PLAID index
- Demote test functions by -1 unless the query mentions "test"
- Find representative lines using weighted token matching with a sliding window
Index Management
colgrep init
Build or incrementally update the index for a project without running a search. If the index already exists, only changed files are re-encoded.
colgrep init # current directory
colgrep init ~/projects/myapp # specific project
colgrep init -y # auto-confirm for large codebases (>10K code units)
colgrep init --model lightonai/LateOn-Code # use a specific model
colgrep init --pool-factor 1 # disable embedding pooling (more precise)
This is useful for:
- Pre-warming the index so the first search is instant
- CI/dev setup scripts where you want indexing to happen ahead of time
- Updating the index after pulling new code
# Check index status
colgrep status
# Clear current project index
colgrep clear
# Clear all indexes
colgrep clear --all
# Show statistics
colgrep --stats
Indexes are stored outside the project directory:
| Platform | Location |
|---|---|
| Linux | ~/.local/share/colgrep/indices/ |
| macOS | ~/Library/Application Support/colgrep/indices/ |
| Windows | %APPDATA%\colgrep\indices\ |
{project}-{hash8}. Inside:
index/— PLAID vector index + SQLite metadatastate.json— File hashes for incremental updatesproject.json— Canonical project path
ColGREP automatically detects and repairs index/metadata desync from interrupted operations.
Supported Languages
Code (25 languages, tree-sitter AST parsing)
| Language | Extensions |
|---|---|
| Python | .py |
| TypeScript | .ts, .tsx |
| JavaScript | .js, .jsx, .mjs |
| Go | .go |
| Rust | .rs |
| Java | .java |
| C | .c, .h |
| C++ | .cpp, .cc, .cxx, .hpp, .hxx |
| C# | .cs |
| Ruby | .rb |
| Kotlin | .kt, .kts |
| Swift | .swift |
| Scala | .scala, .sc |
| PHP | .php |
| Lua | .lua |
| Elixir | .ex, .exs |
| Haskell | .hs |
| OCaml | .ml, .mli |
| R | .r, .rmd |
| Zig | .zig |
| Julia | .jl |
| SQL | .sql |
| Vue | .vue |
| Svelte | .svelte |
| HTML | .html, .htm |
Text & Config (11 formats, document-level extraction)
| Format | Extensions |
|---|---|
| Markdown | .md |
| Plain text | .txt, .rst |
| AsciiDoc | .adoc |
| Org | .org |
| YAML | .yaml, .yml |
| TOML | .toml |
| JSON | .json |
| Dockerfile | Dockerfile |
| Makefile | Makefile |
| Shell | .sh, .bash, .zsh |
| PowerShell | .ps1 |
Installation
The pre-built binaries from Quick Start are the fastest way to get started. For hardware acceleration on Linux/Windows, or to build from source, use Cargo.
Cargo
Install from crates.io:
# CPU-only (all platforms)
cargo install colgrep
# macOS with full acceleration (same as pre-built binary)
cargo install colgrep --features "accelerate,coreml"
# Linux with OpenBLAS
cargo install colgrep --features openblas
# Linux with CUDA
cargo install colgrep --features cuda
# Linux with CUDA + TensorRT
cargo install colgrep --features "cuda,tensorrt"
# Windows with DirectML
cargo install colgrep --features directml
Build from Source
git clone https://github.com/lightonai/next-plaid.git
cd next-plaid
cargo install --path colgrep --features "accelerate,coreml" # or your preferred features
Hardware Acceleration Features
| Feature | Platform | Description |
|---|---|---|
accelerate | macOS | Apple Accelerate for vector operations |
coreml | macOS | CoreML for model inference |
openblas | Linux | OpenBLAS for vector operations |
cuda | Linux/Windows | NVIDIA CUDA for model inference |
tensorrt | Linux | NVIDIA TensorRT for model inference |
directml | Windows | DirectML for model inference |
OpenBLAS setup (Linux)
__CODE_BLOCK_17__ Then: __INLINE_CODE_140__ONNX Runtime
ONNX Runtime is downloaded automatically on first use. No manual installation required.
Lookup order:
ORT_DYLIB_PATHenvironment variable- Python environments (pip/conda/venv)
- System paths
- Auto-download to
~/.cache/onnxruntime/
Environment Variables
| Variable | Description |
|---|---|
ORT_DYLIB_PATH | Path to ONNX Runtime library |
XDG_DATA_HOME | Override data directory |
XDG_CONFIG_HOME | Override config directory |
HF_TOKEN | HuggingFace token for private models |
HUGGING_FACE_HUB_TOKEN | Alternative HF token variable |
Citation
@software{next-plaid,
title = {NextPlaid, ColGREP: Multi-vector search, from database to coding agents.},
url = {https://github.com/lightonai/next-plaid},
author = {Sourty, Raphaël},
year = {2026},
}
@misc{LateOn-Code,
title = {LateOn-Code: a Family of State-Of-The-Art Late Interaction Code Retrieval Models},
author = {Chaffin, Antoine},
url = {https://huggingface.co/collections/lightonai/lateon-code},
year = {2026}
}
License
Apache-2.0